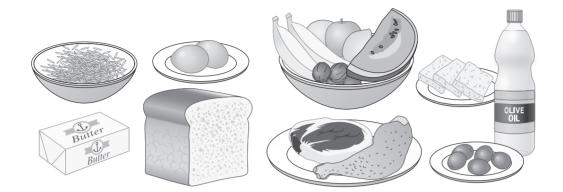
Macmillan Science Workbook

EDUCATION

Sample marketing text © Macmillan Publishers LTD

David and Penny Glover


Contents

Un	it 1 Living things	4	8 What's in the air?	29
Hu	man body	4	9 Using gases from the air	31
1	Food and nutrition	4		0.0
2	Food groups	6	End-of-unit test 2	32
3	A balanced diet	7	Unit 3 Our Earth	35
4	Food and energy	9	Water supply	35
5	Digestion	10	1 Water from different sources	35
Fcc	blogy	11	2 The water cycle	37
6	Producers and consumers	11	3 Water and disease	38
7	Energy flow in a food chain	12	4 Purifying water	39
, 8	Ecosystems	13	5 Conserving water	40
9	Threats to the environment	14		41
10	Conservation	15	E 6 The atmosphere	41 41
11	The 3Rs - reduceareusentercycleg te	x ito Ma		41
	Compre interrupting to			
End	d-of-unit test 1	17	8 Cleaning the air	44 45
	it 2 Matter and materials	20	9 Global warming	40
		20	The Earth's features	46
_	es of matter		10 The changing Earth	46
1	Elements, compounds and mixtures		11 Volcanoes	47
	Physical and chemical changes	22	12 The rock cycle	48
3	Mixtures and solutions	23	13 Earthquakes	49
4	Separating mixtures	24	14 Earthquakes and people	51
Wc	Iter and air	25	15 Shaping the landscape	52
5	The properties of water	25		
6	Using water	26	End-of-unit test 3	54
7	The properties of air	27		

Un	it 4 Forces and energy	57	Electricity and magnetism	77
Motion, forces and machines		57	20 Static electricity	77
1	Types of motion	57	21 Electric circuits	78
2	Forces and their effects		22 Circuit projects	79
3	Simple machines	60	23 Magnetic materials	80
4	Levers	61	24 Magnetic poles	82
5	Pulleys	62	25 Using magnets	83
6	Screws	63	End of whittest 4	0 Л
7	Gears	64	End-of-unit test 4	84
8	Using machines	65	Unit 5 Astronomy	88
9	Investigating friction	66	1 Day, night and the seasons	88
10	Using friction	67	2 The phases of the moon	89
Lig	ht	68	E 3 Eclipses of the sun and the moon	91
11	Light and seeing ample marketing	g te ∕at8© M	lacmillan Puplishers_LTD	92
12	Light and materials	69		
13	Making shadows	70		
14	Reflection	71		
15	Refraction	72		
16	The eye	73		
17	Investigating lenses	74		
18	Optical instruments	75		
19	Colour	76		

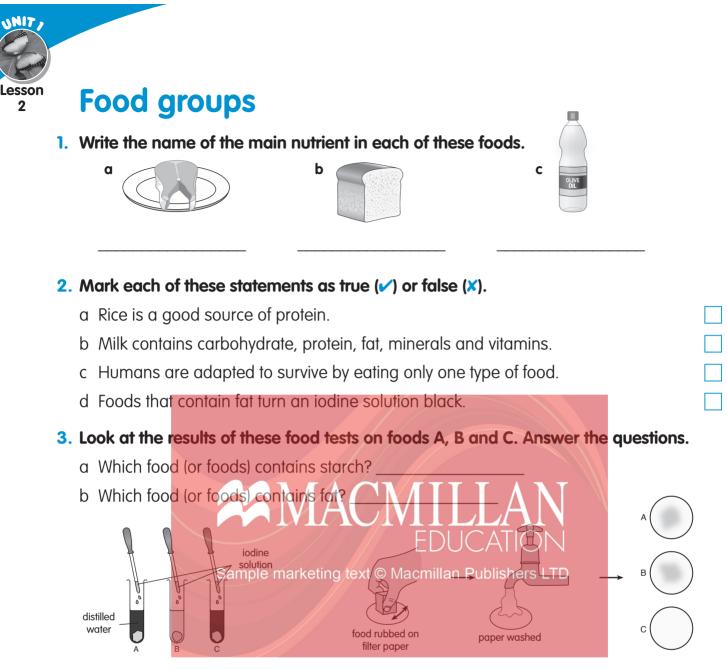
1. Label these foods as coming from plants (P) or animals (A).

2. Unscramble the letters to make the names of five nutrients. (If you are stuck look at this topic in your Pupil's Book for possible words.)

- 3. Write the name of the nutrient for each of these descriptions.
 - a They provide energy. Digestion breaks them into simple sugars.
 - b Needed for growth and repair.
 - c They supply energy and are used to build some body parts; excess is unhealthy.
 - d Special substances the body needs in small amounts but cannot make itself.
 - e Simple substances the body needs to build bones and perform other tasks.

4. Explain briefly the importance of each of these minerals in the diet.

- a iron
- b calcium
- c salt

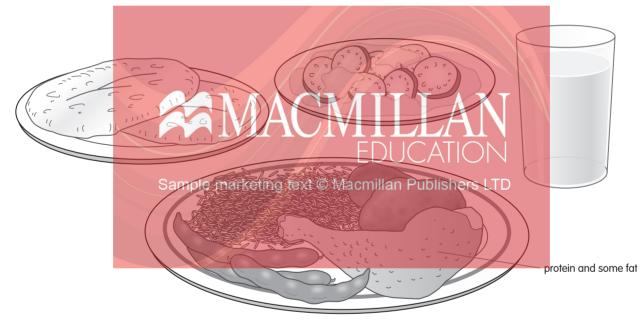

Use the library and the Internet to learn more about the different minerals the body needs, and the foods that provide them.

Choose a mineral and write a brief report on it to present to the class.

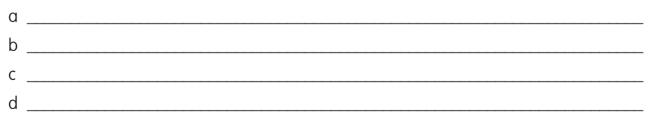
- c This process breaks the food we eat into simpler substances that the body can use. digestion / respiration / excretion
- d This substance does not provide nutrition, but helps waste pass through the digestive system.

protein / fat / fibre

- 4. What foods have you eaten in the past 24 hours? What nutrients do these foods contain? Write the name of the food you have eaten for each of the food types listed below.
 - a A food from a plant.
 - b A food from an animal.
 - c A protein-rich food.
 - d A carbohydrate-rich food.
 - e A fatty food.
 - f A mineral-rich food.
 - g A vitamin-rich food. _____
 - h A food that contains fibre.


A balanced diet

1. Unscramble the words to make sentences that describe a balanced diet.


healthy to We mixture stay must eat a of foods different

contains A diet balanced carbohydrates, proteins, vitamins, minerals and some fat

2. Label the diagram. Label foods in this meal with the nutrients they provide. The chicken, for example, provides protein and some fat.

3. List *four* important uses of water in the body.

4. The tables below give the water intake and water losses for two people during a day. Answer the questions.

Person B

Person A

Water intake in cm ³	Water losses in cm ³	
2800	urine	1500
	sweat	1000
	breathing out	400
	faeces	150

Water intake in cm ³	Water losses in cm ³		
2400	urine	1400	
	sweat	550	
	breathing out	370	
	faeces	80	

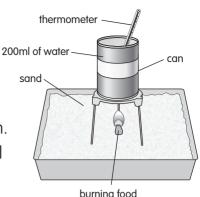
- a Which person may be dehydrated? _
- b Which person's water is in balance?
- c Explain ho<mark>w you know.</mark>

Sample marketing text © Macmillan Publishers LTD

8

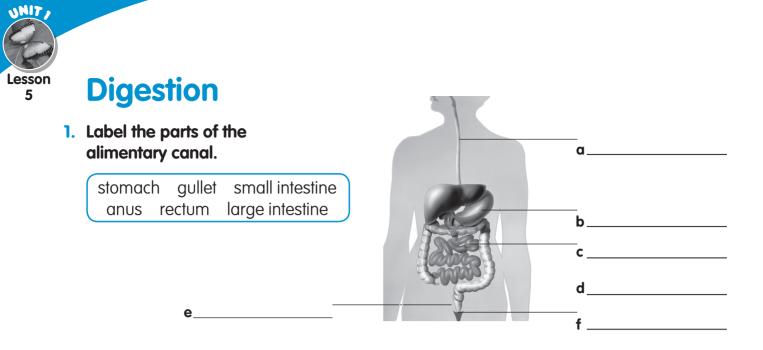
Food and energy

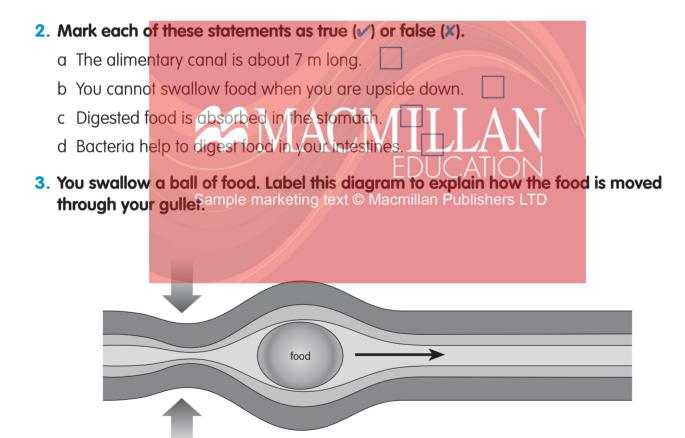
Activities 1, 2 and 3 refer to the experiment below.


Class five compared the energy content of different foods. They used a candle to set fire to a 2 g sample of each food. They used the burning food to heat 200 ml of water in a tin can. They measured the initial temperature of the water and its final temperature when the sample had stopped burning. These are their results.

Food	Initial water temperature (°C)	Final water temperature (°C)	Temperature rise (°C)
dry bread	22	40	
nut	25	63	
chocolate	24	78	

1. Complete the table by calculating the rise in water temperature each sample produced.


2. Answer the questions.


- a Which food sample contained the greatest amount of energy per gram?
- b Which food sample contained the least amount of energy per gram?
- c Explain how you know.
- 3. Explain briefly why the class took care to use the same mass of food and the same volume of water for each test.
- 4. Look at these food labels. Pitta bread **Dates** Chocolate Explain why it is better to Energy per 100 g Energy per 100 g Energy per 100 g snack on bread or dates 275 calories 280 calories 504 calories than on chocolate.

UNIT.

burnina food

4. You eat some bread and some dates. Describe briefly what happens to this food after you put it into your mouth.